a2 United States Patent

Veresov

US009213562B2

US 9,213,562 B2
Dec. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) GARBAGE COLLECTION SAFEPOINT
SYSTEM USING NON-BLOCKING
ASYNCHRONOUS I/O CALL TO COPY DATA
WHEN THE GARBAGE COLLECTION
SAFEPOINT IS NOT IN PROGRESS OR IS
COMPLETED

(75) Inventor: Igor Veresov, Santa Clara, CA (US)

(73) Assignee: ORACLE INTERNATIONAL

CORPORATION, Redwood Shores,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 815 days.

(21) Appl. No.: 12/972,181

(22) Filed: Dec. 17,2010
(65) Prior Publication Data
US 2012/0159477 Al Jun. 21, 2012
(51) Imt.ClL
GOG6F 9/46 (2006.01)
GO6F 9/455 (2006.01)
GOGF 12/02 (2006.01)
(52) US.CL
CPC ... GO6F 9/45504 (2013.01); GO6F 12/0269

(2013.01)
(58) Field of Classification Search
CPC GO6F 12/0253; GO6F 17/30; GOGF 9/3004
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,842,016 A * 11/1998 Toutonghietal. 718/106
6,862,674 B2* 3/2005 Diceetal.cccooonnin. 711/170

7,610,413 B2* 10/2009 Popeetal. ... 710/36
2005/0149529 Al* 7/2005 Gutmans 707/10
2012/0089700 Al* 4/2012 Safrutietal. ... 709/217

OTHER PUBLICATIONS

Open JDK, “HotSpot Glossary of Terms”, downloaded from
openjdk java.net/groups/hotspot/docs/HotSpotGlossary.html, on
Sep. 17, 2010, S pages.

Hohensee, “The Hotspot Java Virtual Machine”, downloaded from
cs.princeton.edu/picasso/mats/HotspotOverview.pdf on Sep. 17,
2010, 129 pages.

Sun Microsystems, “Memory Management in the Java HotSpot Vir-
tual Machine”, Sun Microsystems, Apr. 2006, 21 pages.

* cited by examiner

Primary Examiner — Meng An
Assistant Examiner — Wissam Rashid
(74) Attorney, Agent, or Firm — Tucker Ellis LLP

(57) ABSTRACT

A system and method for providing direct socket input/output
(I/0) for Java in a Java Virtual Machine (JVM) environment.
During runtime, the system periodically garbage collects
software objects in the Java memory space or heap. In accor-
dance with an embodiment, the system provides a means to
change the state of a thread performing the I/O which tem-
porarily disallows garbage collection from taking place, thus
guaranteeing that a receiving object in the heap does not
move. The use of safepoints to prohibit GC from happening
during the I/O call means that a global GC lock is not
required. Non-blocking I/O is utilized, while prohibiting a
thread from entering a GC safepoint during an [/O system
call. The technique addresses disadvantages of previous
methods by removing contended locks and by removing
restrictions on allocation. In accordance with an embodiment,
a special thread state can be used to prevent the thread from
entering a GC safepoint.

12 Claims, 5 Drawing Sheets

System Determines whether there is Data in the Kermel Buffer o be
read to the Java Heap . 192
Thread State is changed from State Thread_in_Native
{n State Thread_No_GC N\ 194
et GO Safepelnt is in
Determine GC progress, then GC
196 Safepointisin Satepoint Subsyslem ™\~ 188

progress?

Blocks until Safepoint has
been completed

GG Satepoint is not in progress, then Copy Data Directly romthe ¥\ 202
Kerngi Buffer o the Java Heap

:

After Copying. Thread State i changed from Slate Thread_No GC
back to State Thread_n_Native

"\ 204

U.S. Patent

Dec. 15, 2015

Sheet 1 of 5

US 9,213,562 B2

Java Application Code18

Java Native Interface /JNI 18

Threads ;ﬂ 7{{§?&@§ mi r g{é?afgf m} Eﬂ E;gt*a% m}
L T S L ...
Java Heapt30
! Object 132 P Objact 134 |

GC Maamory 142

GC Safepoint Subsystem 144

Sarbage Coliector {GC 140

rtemat JVM Mamory 112

Java Virtual Machine 110

Kamel 108

Cperating Systam (O/S) 108

Physical System Resources 104

Computer Systam 102

FIGURE 1

US 9,213,562 B2

Sheet 2 of 5

Dec. 15, 2015

U.S. Patent

951

¥5l

701 Welshs mydwion

801 sy

DL L euiudnp
LA, BhEr

Pyl WBsAsgns
wwdaes 00

851 P90
pElepdn
ggidean BABRP

071 Spess L

] oamenT |
BTN

Qi By A
SANEN BABP

A

SLEBDOD
uvonemddy sAsr

g9t

Git

204 wislshs seindiunn

RO (B0

(mm N aa oy

\.:.@mm.@::

31 LLUORH]
IBOIRA BARD

v} wolsksgng
uodeges 59

o5t ook
| peyspdn |
ortpdeey srur

oy spralL | g

| w9 o
L Peamt |

Gi i s0eUely
BPBN BAEP

L

G113P00
ueaddy srep

& R3unNord .
D st
254 agl
0L wasAS JsIndiios 701 welsds emdwo)
BOL BuEH 0L (U
i poieeq | L osieweq
Q1 L aUgoBH Gl Eoulaapny
{enLA BABP {BTILEA RABD
¥pi ussishsnng Pl wHshonng
wedares 00 dsiEs 09
o1 WRis Z81 palqo
¥ol
peLdesy BaRpP ociiean Brer
oz sgeay Dzt speaty
j oot | posanenTu |
peal | " L_eanl
281

SAIEN BABP

x

BLEORO
usemEity BARp

DLL P0BMMY LA

Dii1 SOBLBRY
SALEN BARP

%

SLLBPOD
uoneonddy erarr

US 9,213,562 B2

Sheet 3 of 5

Dec. 15, 2015

U.S. Patent

Gi4

70 WeIEAS o

801 [BuISH
........ sl
Bleg payepdn

O suynap
B BABD

oy iBSAsans
waodejes 09

gu walgn
paiepdn
G LOEBH BARD

DZL SpRe |

poeneN U |
L beas

L

o1 enBuEly |
Al BAED

Y

FLLBPOD
ungeoiddy earp

B8il

it

£ 3N o
D aug
¥il ik iy
201 wmsAg semduss 201 wasts smndinoes 201 WISAS tenden
204 psuay 2oL BB 01 1oy
\ 0ol Beg , 8L BieQ ﬁ. 081 Bieg
T
GLPBURIORH G4 L BuoRpy O suney
BOLA BABP fBnNLHA BB {ETRA BAED
Bt LBISASONG Pyl wisieAsang Py wESASHNG
wodses 09 wiedsieg 05 wiodaps 0D
NS 991 1ali0 ze1 10040
pajepdn oy poepdry)
ptideey gasp " g Ledra eagp a¢idean eagr
_0zLspeayy | _bei spramy _0zi speaiy
TR 4 | oven | pooeaenup |
L Tpean i i “pwail) i ﬁ L “peaniy i
284

414 SOBLOI
aANRN BABP

X

gi1apas
snypoyddy Bapp

DLl enEuaNY |
SAHEN 2B

/'3

B148P0D
uempidy eapr

SL1} eneLBu
DAEN BARE

X

SLiapod
wonolddy enup

U.S. Patent Dec. 15, 2015 Sheet 4 of 5 US 9,213,562 B2

e 180

FIGURE 4

System Determings whether thers is Data in the Kernel Bufferto be
read to the Java Heap e 102

|

Thread State is changed fron State Threadin_Native 7
to State Thread_No_GC e 184

G0 Safepintiadn
pogress, then GO
Safepnint Subsyslemn PN 188
Blocks unlif Safepoint has
heen completed

Determing ¥ GC
Safepoint isin
progressy

186

GO Safepoint is not in progress, then Copy Data Dirsclly fromthe ¥\ 2072
Kerngl Bulfer {o the Java Heap

h 4
After Copying, Thread State is changed from State Thread_No GO
back to State Thread_in_Native N 204

FIGURE 5

U.S. Patent Dec. 15, 2015 Sheet 5 of 5 US 9,213,562 B2

System Determines whether Data can be sent (o the Kemel
from the Java Heap e 210

'

Thread State is changed from State Thread _In_Natlive
1o State Thread _No GO e 212

¥ GC Safepointis in
prograss, then GG
Safepoint Subsystem ¥\ 218
Blocks untl Safepoint has
hean completed

Detarming f GC
Safepoint is in
progressa?

214

If 3G Safepoint is not in progress, then Copy Data Directly fromthe . PO 918
Java Heaap to the Kemsd

I

After Copying, Thread Sisle is changed from Stale Thread _No GC
back 1o State Thread_in_Native N 220

FIGURE ¢

US 9,213,562 B2

1
GARBAGE COLLECTION SAFEPOINT
SYSTEM USING NON-BLOCKING
ASYNCHRONOUS I/O CALL TO COPY DATA
WHEN THE GARBAGE COLLECTION
SAFEPOINT IS NOT IN PROGRESS OR IS
COMPLETED

FIELD OF INVENTION

The present invention is generally related to virtual
machines, such as Java Virtual Machines, and is particularly
related to a system and method for providing direct socket
input/output for Java in a virtual machine.

BACKGROUND

Within any computer system, and particularly those that
include an enterprise-level software stack such as an applica-
tion server running atop a virtual machine, as network speeds
increase, it becomes increasingly important to optimize the
path which data travels within the stack. Extra data copy
operations can significantly reduce the performance of the
system.

In the context of Java, and Java Virtual Machines (JVM),
one approach that can be used to eliminate extra copies of
objects within the Java input/output (I/0) libraries is to allow
socket 1/O calls to access the Java memory space or heap
directly. However, in a JVM, since the heap is garbage-col-
lected, the objects therein (in the case of 1/0, a byte buffer)
can move, which in turn can cause problems with the I/O.

Different virtual machine technologies have attempted to
address this problem. For example, object pinning, as is used
in the JRockit JVM, provides a Java language interface that
allows the user to pin certain objects, thus preventing those
objects from being moved by the garbage collector during
garbage collection. Since the object does not move, the [/O
can be performed directly. The downside of this approach is
that it imposes a nontrivial overhead on allocation and gar-
bage collection. As another example, a garbage collection
(GC) locker feature, such as is used in the Hotspot JVM,
provides a global locking mechanism that allows the user to
temporarily disallow garbage collection from taking place,
thus guaranteeing that the receiving object in the heap does
not move. The downside of this approach is that the global
lock is a single contention point, and therefore reduces system
scalability; if the lock is held and the young generation is full,
then subsequent allocation goes slow path to the old genera-
tion. These are the general areas that embodiments of the
present invention are intended to address.

SUMMARY

Described herein is a system and method for providing
direct socket input/output (I/O) for Java in a Java Virtual
Machine (JVM) environment. During runtime, the system
periodically garbage collects software objects in the Java
memory space or heap. In accordance with an embodiment,
the system provides a means to change the state of a thread
performing the /O which temporarily disallows garbage col-
lection from taking place, thus guaranteeing that a receiving
object in the heap does not move. The use of safepoints to
prohibit GC from happening during the /O call means that a
global GC lock is not required. Non-blocking I/O is utilized,
while prohibiting a thread from entering a GC safepoint dur-
ing an I/O system call. The technique addresses disadvan-
tages of previous methods by removing contended locks and
by removing restrictions on allocation. In accordance with an

10

15

20

25

30

35

40

45

50

55

60

65

2

embodiment, a special thread state can be used to prevent the
thread from entering a GC safepoint.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates a system which allows for direct socket
1/O for Java in a Java Virtual Machine (JVM) environment, in
accordance with an embodiment.

FIG. 2 illustrates how the system can be used to provide for
direct socket I/O for Java, in accordance with an embodiment.

FIG. 3 illustrates how the system can be used to provide for
direct socket 1/0 to send data, in accordance with an embodi-
ment.

FIG. 4 illustrates an example pseudocode, for controlling
direct socket I/O for Java, in accordance with an embodiment.

FIG. 5 is a flowchart of a method for performing direct
socket I/O for Java, in accordance with an embodiment.

FIG. 6 is a flowchart of a method for performing direct
socket I/O to send data, in accordance with an embodiment.

DETAILED DESCRIPTION

In the following description, the invention will be illus-
trated by way of example and not by way of limitation in the
figures of the accompanying drawings. References to various
embodiments in this disclosure are not necessarily to the
same embodiment, and such references mean at least one.
While specific implementations are discussed, it is under-
stood that this is done for illustrative purposes only. A person
skilled in the relevant art will recognize that other compo-
nents and configurations may be used without departing from
the scope and spirit of the invention.

As described above, within any computer system, it is
important to optimize the path which data travels within the
stack. Extra data copy operations can significantly reduce the
performance of the system. In the context of Java, and Java
Virtual Machines (JVM), one approach that can be used to
eliminate extra copies of objects within the Java input/output
(I/0) libraries is to allow socket I/O calls to access the Java
memory space or heap directly. However, in a JVM, since the
heap is garbage-collected, the objects therein (in the case of
1/0, a byte buffer) can move, which in turn can cause prob-
lems with the 1/O. Different virtual machine technologies
have attempted to address this problem, for example through
the use of object pinning, or garbage collection (GC) locker.
However, these techniques have disadvantages such as
increased overhead or reduced scalability.

In accordance with an embodiment, described herein is a
system and method for providing direct socket I/O for Java in
a JVM environment. During runtime, the system periodically
garbage collects software objects in the Java memory space or
heap. In accordance with an embodiment, the system pro-
vides a means to change the state of a thread performing the
1/0 which temporarily disallows garbage collection from tak-
ing place, thus guaranteeing that a receiving object in the heap
does not move. The use of safepoints to prohibit GC from
happening during the 1/O call means that a global GC lock is
not required. Non-blocking I/O is utilized, while prohibiting
a thread from entering a GC safepoint during an [/O system
call. The technique addresses disadvantages of previous
methods by removing contended locks and by removing
restrictions on allocation. In accordance with an embodiment,
a special thread state can be used to prevent the thread from
entering a GC safepoint.

As referred to herein, garbage collection (GC) is the auto-
matic management of the memory or Java heap storage within
a JVM, and can utilize a variety of techniques, such as con-

US 9,213,562 B2

3

current garbage collection, generational garbage collection,
copying garbage collection, or compaction, each of which
can be performed individually, serially, or in parallel with
other garbage collection techniques. The particular details of
each different garbage collection technique will be evident to
one of ordinary skill in the art, and as such are not described
herein. Embodiments of the present invention can be imple-
mented to work with any form of garbage collection tech-
nique, including those described above.

As also referred to herein, sockets which are used to read
and write data within the JVM, and from the operating system
kernel to the Java heap, can be either blocking or non-block-
ing, and calls to those sockets can be respectively blocking/
blocked or non-blocking/non-blocked. A call to a blocking
socket is blocked until the request for data has been satisfied.
When the system writes data on the socket, the read operation
will then complete and execution of the program will resume.
A call to a non-blocking socket requires that the system
recognize the condition and act appropriately. Programs that
use non-blocking sockets typically use one of two methods
when sending and receiving data, e.g. polling periodically
attempts to read or write data from the socket (typically using
a timer), while asynchronous notification requires that the
program be notified whenever a socket event takes place, so
that it can in turn respond to that event.

As also referred to herein, a safepoint is a point during
execution of a Java program within the JVM at which all
garbage collection roots are known, and all heap object con-
tents are consistent. From a global point of view, all of the
threads executing in the JVM must block at a safepoint before
the garbage collector can run (although threads running JNI
code can continue to run unless they try to load or store to the
Java heap, in which case they would be suspended until the
end of the safepoint). From a local point of view, a safepoint
is a distinguished point in a block of code where the executing
thread may block for the garbage collector. Most call sites
qualify as safepoints. There are strong invariants which hold
true at every safepoint, and which may be disregarded at
non-safepoints. Both compiled Java code and C/C++ code
can be optimized between safepoints, but less so across safe-
points. In some JVMs, the compiler can emit a garbage col-
lection map at each safepoint, which the JVM can then use to
identify object references.

In the context of a typical JVM environment, there may be
both blocking 1/O calls and non-blocking 1/O calls. Some
JVM, such as Hotspot, provide a GC locker feature that works
with non-blocking I/O calls (but not with blocking I/O calls),
and with a byte array in the Java heap. In these systems, the
native Java code generally takes a lock, which inhibits gar-
bage collection globally, performs a non-blocking call, and
allows the data to be transferred to the Java heap, after which
the lock is released. When the JVM wants to perform a gar-
bage collection, it similarly acquires a write lock, waits for all
read locks to be given up, and then performs the garbage
collection.

However, locks provided by features such as GC locker can
be held simultaneously by many threads, so different threads
can potentially prohibit other threads from making a write to
the heap. Additionally, no similar feature is provided for
blocking I/O calls. Workarounds may include reading to the
buffer in C heap with a blocking call, and then copying the
buffer from C heap to Java heap, taking a GC locker lock to
prohibit garbage collection, but such workarounds add addi-
tional overhead.

In accordance with an embodiment, the system allows
blocking calls to be replaced with non-blocking calls. From
the point of view of a Java user, the call is a blocking send-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

and-receive, butunder the hood it is a non-blocking send-and-
receive. The system can work with any operating system
(O/S) that allows verification of whether data can be written
to/read from a socket, such as the Poll() system call provided
in Unix.

Application threads can have different states associated
therewith, which the system can change to allow or to inhibit
garbage collection. For example, in atypical JVM, the threads
may be associated either with state Thread_In_Native
(wherein native code and garbage collection can happen at
any point of execution); or state Thread_In_Java (wherein the
thread is executing interpreted or compiled Java code and
garbage collection can only happen at safepoints). If a Poll()
or Recv() function is invoked, to determine if there is data in
the kernel to be read, and the thread is in state Thread_In_Java
or state Thread_In_Native, then garbage collection can
potentially happen, which can lead to the I/O problems
described at the outset.

In accordance with an embodiment, prior to execution an
1/O operation the thread state is instead changed to a new state
Thread_No_GC, in which the system generally prohibits gar-
bage collection from happening. The change of state is
delayed and the thread is blocked if a garbage collection was
requested, and a garbage collection is performed. This tech-
nique guarantees that the system can get the pointer to the
byte array in Java heap, and quickly copy data from the buffer
and kernel to the Java heap. After copying the data from the
kernel to the heap, the thread state is then changed back from
state Thread_No_GC to state Thread_In_Native, so that gar-
bage collection can again potentially happen at any point of
execution.

In accordance with an embodiment, the thread state
Thread_No_GC can be similar to the thread state Thread_In_
Java, but is used by the system only to prohibit entering
safepoints that would move objects, and not to prohibit enter-
ing other types of safepoints that might normally happen in
the virtual machine at runtime.

In accordance with an embodiment, the JVM can include
an application program interface (API), such as the Java
Native Interface (JNI), or another interface, which can be
modified to allow the state Thread No_GC to be invoked on
one or more (or all) threads. For example, thread state
changes can be invoked by a Java user or code with a “prohibit
GC safepoints”, to which the system can respond with the
above procedure.

FIG. 1 illustrates a system which allows for direct socket
1/O for Java in a Java Virtual Machine (JVM) environment, in
accordance with an embodiment. As shown in FIG. 1, a typi-
cal system can include a computer system 102, which in turn
includes physical system resources 104, such as processor,
memory, storage and networking devices, and an operating
system 106 with a kernel 108. The computer system can host
one or multiple JVM 110, although for clarity only a single
JVM is shown in the figure. In accordance with an embodi-
ment, the JVM can include an internal JVM memory 112, and
a native application program interface (API), such as a modi-
fied Java Native Interface (JNI) 116, that allows a Java pro-
gram or application code 118 to run within the JVM. Program
execution is performed by a plurality of threads 120 (illus-
trated here as threads A 122, B 124 and C 126, each with an
associated thread state). Program objects and data are allo-
cated as objects 132, 134 in the memory space or heap 130.
During runtime, a garbage collector 140, in combination with
a transient garbage collection memory 142 and a garbage
collection GC safepoint subsystem (sometimes referred to as
a “safepoint mechanism”) 144, performs garbage collection
on objects in the heap, utilizing any of the various garbage

US 9,213,562 B2

5

collection techniques such as concurrent garbage collection,
generational garbage collection, copying garbage collection,
compaction, or other garbage collection techniques described
above.

It will be evident that, depending on the particular JVM
environment used, and in accordance with other embodi-
ments, different components can be included within the JVM.

FIG. 2 illustrates how the system can be used to provide for
direct socket I/O for Java, in accordance with an embodiment.
As shown in FIG. 2, which for clarity omits some of the
components described above, over time 150, 152, 154, 156,
Java program execution is performed by the plurality of
threads 120, each of which have a state associated therewith.
The program objects and data are again allocated as objects
132 in the memory space or heap 130 of the JVM. During
runtime, data 160 becomes available at the kernel (e.g. in the
kernel buffer), to be read/written to the Java heap. In accor-
dance with an embodiment, the program’s thread state is
changed 162 from state Thread_In_Native to state Thread_
No_GC. The GC safepoint subsystem 144 then determines
whether a GC safepoint is in progress. If it is determined that
a GC safepoint is in progress, the safepoint subsystem blocks
164 until that safepoint has been completed. If instead it is
determined that a GC safepoint is not in progress, then the
system acquires a pointer to the kernel byte array, or other-
wise copies data directly 166 from the kernel buffer to the
Java heap, to update the object 168. After the data has been
copied, the program’s thread state is then changed back 170
from state Thread_No_GC to state Thread_In_Native, and
the process repeats.

The above example illustrates how data can be received at
the Java heap from the kernel space. The technique can be
similarly used to enable sending of data from the Java heap to
the kernel space. For example, FIG. 3 illustrates how the
system can be used over time 172,173,174, 175 to provide for
direct socket 1/0 to send data, in accordance with an embodi-
ment. As shown therein, when an object is updated at the Java
heap, the program’s thread state can be again changed from
state Thread_In_Native to state Thread_No_GC. Ifit is deter-
mined that a GC safepoint is in progress, the safepoint sub-
system blocks until that safepoint has been completed. If
instead it is determined that a GC safepoint is not in progress,
then the system can copy data directly 178 from the Java heap
to the kernel, to update the data 179 at the kernel.

FIG. 4, which is also reproduced below, illustrates an
example pseudocode 180, for controlling direct socket I/O for
Java, in accordance with an embodiment.

RecvFromSocket(s, 0)

10: Poll(s)

20: ChangeState(Thread_ No__ GC)
30: BlockIfGCSafepoint()

40: p = GetPointer(o)

50: Recv(p)

60: ChangeState(Thread__In_ Native)

In the above example, which illustrates a typical receive
from socket, line 10 executes a Poll() system call on a socket,
that determines whether there’s any data in the kernel buffer
available to read. This call is blocking, and the current thread
is in such a state at the moment that allows safepoints to occur.
So, while Poll() is blocked a GC safepoint can happen and the
object “0” can move. On line 20 a ChangeState() function
(which can be added to the JNI interface) is executed, that
changes the state of thread so that it cannot enter a GC safe-
point until it cooperates. The state is similar to a regular Java

30

40

45

50

55

6

thread state, but only prevents the thread from entering a
GC-only safepoint. On line 30 the system checks if a GC
safepoint is in progress or has been requested in which case
the system cooperates and blocks until the safepoint is com-
pleted. In accordance with an embodiment, the function
BlocklfGCSafepoint() is configured so that it changes the
thread state from Thread_No_GC to Thread_In_Native, so
that the GC safepoint can proceed, and then back to Thread_
No_GC when the safepoint is complete. On lines 40 and 50,
the system acquires the pointer to the byte array (the “0”
parameter) and does an non-blocking system call to copy data
from kernel space directly to Java heap. On line 60 the system
transitions back to the native thread state, allowing the thread
to enter safepoints at any time.

An equivalent example pseudocode, for enabling sending
of'data from the Java heap to the kernel space, is shown below.

SendToSocket(s, 0)

10: Poll(s)

20: ChangeState(Thread_ No__ GC)
30: BlockIfGCSafepoint()

40: p = GetPointer(o)

50: Send(p)

60: ChangeState(Thread__In_ Native)

The above-described technique provides several advan-
tages over traditional methods. By executing BlocklfGCSafe-
point() the thread actually enters the safepoint (as if it were a
typical Java thread or a JNI thread that tried to resolve a
handle during a safepoint), if and only if the safepoint is a GC
safepoint. This allows systems, such as JRockit, Hotspot or
other JVMs, to provide this functionality within their existing
safepoint environments, without requiring any additional
synchronization, and while eliminating an extra GC lock. In
particular, there is no overhead on the allocation and garbage
collection as compared to object pinning techniques; there is
no single point of contention as compared to traditional GC
locker techniques—all thread state transitions can be imple-
mented lock-free; and there are no restrictions on allocation
as compared to traditional GC locker techniques.

The above-described pseudocode examples are provided
for purposes of illustrating these techniques in a Unix envi-
ronment. It will be evident that, in accordance with other
different embodiments, different forms of coding can be used
to perform similar functionality.

FIG. 5 is a flowchart of a method for performing direct
socket 1/0 for Java, in accordance with an embodiment. As
shown in FIG. 5, at step 192, the system determines whether
there is data in the kernel (e.g. in the kernel buffer), which
needs to be read/written to the heap. At step 194, the pro-
gram’s thread state is changed from state Thread_In_Native
to state Thread_No_GC. At step 196, the GC safepoint sub-
system determines whether a GC safepoint is in progress. If,
at step 198, the system determines that a GC safepoint is in
progress, then the GC safepoint subsystem blocks until that
safepoint has been completed. If instead, at step 200, the
system determines that a GC safepoint is not in progress, then
the system acquires a pointer to the kernel byte array, or
otherwise copies data directly from the kernel buffer to the
Java heap. At step 204, after the data has been copied, the
program’s thread state is changed back from state Thread_
No_GC to state Thread_In_Native, and the process repeats.

The above-described thread states are provided for pur-
poses of illustration. It will be evident that, depending on the
particular JVM environment used, and in accordance with

US 9,213,562 B2

7

other embodiments, different types of thread state can be
used, to provide similar functionality.

Again, the above example illustrates how data can be
received at the Java heap from the kernel space, and can be
similarly used to enable sending of data from the Java heap to
the kernel space. For example, FIG. 6 is a flowchart of a
method for performing direct socket 1/O to send data, in
accordance with an embodiment. As shown therein, at step
210, the system determines whether there is buffer space
available in the kernel. At steps 212-216, the program’s
thread state is changed from state Thread_In_Native to state
Thread_No_GC; the GC safepoint subsystem determines
whether a GC safepoint is in progress; and if so blocks until
that safepoint has been completed. If, at step 218, the system
determines that a GC safepoint is not in progress, then the
system copies data directly from the Java heap to the kernel.
At step 220, after the data has been copied, the program’s
thread state is changed back from state Thread_No_GC to
state Thread_In_Native, and the process repeats.

The present invention may be conveniently implemented
using one or more conventional general purpose or special-
ized digital computer, computing device, machine, or micro-
processor, including one or more processors, memory and/or
computer readable storage media programmed according to
the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based
on the teachings of the present disclosure, as will be apparent
to those skilled in the software art.

In some embodiments, the present invention includes a
computer program product which is a non-transitory storage
medium or computer readable medium (media) having
instructions stored thereon/in which can be used to program a
computer to perform any of the processes of the present
invention. The storage medium can include, but is not limited
to, any type of disk including floppy disks, optical discs,
DVD, CD-ROMs, microdrive, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAM,
flash memory devices, magnetic or optical cards, nanosys-
tems (including molecular memory ICs), or any type of media
or device suitable for storing instructions and/or data.

The foregoing description of the present invention has been
provided for the purposes of illustration and description. It is
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
will be apparent to the practitioner skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical appli-
cation, thereby enabling others skilled in the art to understand
the invention for various embodiments and with various
modifications that are suited to the particular use contem-
plated. It is intended that the scope of the invention be defined
by the following claims and their equivalence.

What is claimed is:

1. A system comprising:

a computer system including a memory, a kernel having a
kernel buffer, and one or more processors;

one or more virtual machines, provided on the computer
system, for use in executing a program, wherein each
virtual machine includes:

a plurality of threads operating within the virtual
machine, for executing the program, each of which
thread of said plurality of threads has an associated
thread state,

a memory space which stores program objects associ-
ated with said program and data objects associated
with said program, and

15

20

25

30

35

40

45

50

55

60

65

8

a garbage collector that periodically performs a garbage
collection process on said program objects and said
data objects in the memory space; and

a garbage collection (GC) safepoint subsystem that is
used to control the garbage collection process by
establishing one or more garbage collection (GC)
safepoint which is a point where all of said plurality of
threads block before said garbage collector performs
the garbage collection process on said program
objects and said data objects in the memory space;

wherein, when, during execution of a first thread of said
plurality of threads, the first thread invokes a poll
function to determine if there is kernel buffer data at
the kernel buffer ready to be written to the memory
space, and if such kernel buffer data exists, the thread
state associated with said first thread is changed to a
first thread state which prohibits said first thread from
entering a GC safepoint of said one or more GC safe-
point,

if a GC safepoint of said one or more GC safepoint is in
progress when the first thread invokes a poll function
to determine if there is kernel buffer data at the kernel
buffer ready to be written to the memory space then
said first thread is blocked until said GC safepoint
which is in progress when the first thread invokes a
poll function to determine if there is kernel buffer data
at the kernel buffer ready to be written to the memory
space has been completed, and

after said GC safepoint which is in progress when the first
thread invokes a poll function to determine if there is
kernel buffer data at the kernel buffer ready to be written
to the memory space has been completed or immediately
ifno GC safepoint of said one or more GC safepoint is in
progress the first thread initiates copying of the kernel
buffer data directly from the kernel buffer to the memory
space using a non-blocking asynchronous I/O call, and
after completion of copying the kernel buffer data,
changes the thread state associated with said first thread
to a second thread state which permits said first thread to
enter any GC safepoint of said one or more GC safe-
point;

wherein, when, during execution of a second thread of
said plurality of threads, the second thread invokes a
poll function to determine if there is memory space
data in the memory space ready to be read into to the
kernel buffer, and such memory space data exists, the
thread state associated with said second thread is
changed to said first thread state which prohibits said
second thread from entering a GC safepoint of said
one or more GC safepoint,

if a GC safepoint of said one or more GC safepoint is in
progress when the second thread invokes a poll func-
tion to determine if there is memory space data in the
memory space ready to be read into to the kernel
buffer then said second thread is blocked until said
GC safepoint which is in progress has been com-
pleted, and

after said GC safepoint which is in progress when the
second thread invokes a poll function to determine if
there is memory space data in the memory space
ready to be read into to the kernel buffer has been
completed or immediately if no GC safepoint of said
one or more GC safepoint is in progress, the second
thread initiates copying of the memory space data
directly from the memory space to the kernel buffer
using a non-blocking asynchronous I/O call, and

US 9,213,562 B2

9

after completion of copying the memory space data,
changes the thread state associated with said second
thread to said second thread state which permits said
second thread to enter any GC safepoint of said one or
more GC safepoint.

2. The system of claim 1, wherein each GC safepoint of
said one or more GC safepoint is a point during program
execution of one of said plurality of threads at which all of
said program objects and data objects in the memory space
are consistent with associated objects in the kernel buffer.

3. The system of claim 2, wherein the GC safepoint sub-
system requires all of said plurality of threads to block at any
GC safepoint of said one or more GC safepoint before
enabling said garbage collector to perform the garbage col-
lection process on said program objects and said data objects
in the memory space.

4. The system of claim 1, wherein the second thread state is
a Thread_In_Native thread state.

5. The system of claim 1, wherein:

said one or more virtual machine comprise one or more

Java Virtual Machines;

said program is a Java program; and

said memory space is a Java heap.

6. A method comprising:

providing, at a computer system including one or more

processors, memory, and kernel having a kernel buffer,

one or more virtual machines, for use in executing a

program, wherein each virtual machine includes,

aplurality of threads for executing the program, wherein
each thread of the plurality of threads has an associ-
ated thread state,

a memory space which stores program objects associ-
ated with said program and data objects associated
with said program,

a garbage collector that periodically performs a garbage
collection process on said program objects and data
objects in the memory space, and
a garbage collection (GC) safepoint subsystem that is

used to control the garbage collection process;
establishing with the GC safepoint subsystem one or more
garbage collection (GC) safepoint which is a point
where all of said plurality of threads block before said
garbage collector performs the garbage collection pro-
cess on said program objects and said data objects in the
memory space;

invoking, in a first thread of said plurality of threads, a poll

function to determine if there is kernel buffer data at the

kernel buffer ready to be written to the memory space,
and when such kernel buffer data exists, changing the
thread state associated with said first thread to a first
thread state which prohibits said first thread from enter-
ing a GC safepoint of said one or more GC safepoint;

blocking said first thread if a GC safepoint of said one or
more GC safepoint is in progress when invoking the poll
function to determine if there is kernel buffer data at the
kernel buffer ready to be written to the memory space
until said GC safepoint which is in progress when invok-
ing the poll function to determine if there is kernel buffer
data at the kernel buffer ready to be written to the
memory space has been completed, and

after said GC safepoint which is in progress when invoking

the poll function to determine if there is kernel buffer

data at the kernel buffer ready to be written to the
memory space has been completed or immediately if no

GC safepoint of said one or more GC safepoint is in

progress, initiating copying of the kernel buffer data

directly from the kernel buffer to the memory space

15

20

25

35

40

45

60

10

using a non-blocking asynchronous I/O call of the first
thread, and after completion of copying the kernel buffer
data, changing the thread state associated with said first
thread to a second thread state which permits said first
thread to enter any GC safepoint of said one or more GC
safepoint;

invoking, in a second thread of said plurality of threads, a

poll function to determine if there is memory space data
in the memory space ready to be written to the kernel
buffer, and when such memory space data exists, chang-
ing the thread state associated with said second thread to
the first thread state which prohibits said second thread
from entering a GC safepoint of said one or more GC
safepoint;

blocking said second thread ifa GC safepoint of said one or

more GC safepoint is in progress when invoking a poll
function to determine if there is memory space data in
the memory space ready to be written to the kernel buffer
until said GC safepoint which is in progress when invok-
ing a poll function to determine if there is memory space
data in the memory space ready to be written to the
kernel buffer has been completed, and

after said GC safepoint which is in progress when invoking

a poll function to determine if there is memory space
data in the memory space ready to be written to the
kernel buffer has been completed or immediately if no
GC safepoint of said one or more GC safepoint is in
progress, initiating copying of the memory space data
directly from the memory space to the kernel buffer
using a non-blocking asynchronous 1/O call of the sec-
ond thread, and after completion of copying the memory
space data, changing the thread state associated with
said second thread to the second thread state which
permits said second thread to enter any GC safepoint of
said one or more GC safepoint.

7. The method of claim 6, wherein each GC safepoint of
said one or more GC safepoint is a point during program
execution of one of said plurality of threads at which all of
said program and data objects in the memory space are con-
sistent with associated objects in the kernel buffer.

8. The method of claim 7, further comprising:

determining when all of said plurality of threads have

blocked at any GC safepoint of said one or more GC
safepoint and enabling said garbage collector to perform
the garbage collection process on said program objects
and said data objects in the memory space.

9. The method of claim 6, wherein the second thread state
is a Thread-In-Native thread state.

10. The method of claim 6, wherein:

said one or more virtual machine comprise one or more

Java Virtual Machines;

said program is a Java program; and

said memory space is a Java heap.

11. A non-transitory computer readable storage medium,
including instructions stored thereon which, when read and
executed by a computer, cause the computer to perform steps
comprising:

providing, at a computer system including one or more

processors, memory, and kernel having a kernel buffer,

one or more virtual machines, for use in executing a

program, wherein each virtual machine includes,

aplurality of threads for executing the program, wherein
each thread of the plurality of threads has an associ-
ated thread state,

a memory space which stores program objects associ-
ated with said program and data objects associated
with said program,

US 9,213,562 B2

11

a garbage collector that periodically performs a garbage
collection process on said program objects and data
objects in the memory space, and

a garbage collection (GC) safepoint subsystem that is
used to control the garbage collection process;

establishing with the GC safepoint subsystem one or more
garbage collection (GC) safepoint which is a point
where all of said plurality of threads block before said
garbage collector performs the garbage collection pro-
cess on said program objects and said data objects in the
memory space;

invoking, in a first thread of said plurality of threads, a poll
function to determine if there is kernel buffer data at the
kernel buffer ready to be written to the memory space,
and when such kernel buffer data exists, changing the
thread state associated with said first thread to a first
thread state which prohibits said first thread from enter-
ing a GC safepoint of said one or more GC safepoint;

blocking said first thread if a GC safepoint of said one or
more GC safepoint is in progress when invoking the poll
function to determine if there is kernel buffer data at the
kernel buffer ready to be written to the memory space
until said GC safepoint which is in progress when invok-
ing the poll function to determine if there is kernel buffer
data at the kernel buffer ready to be written to the
memory space has been completed, and

after said GC safepoint which is in progress when invoking

the poll function to determine if there is kernel buffer
data at the kernel buffer ready to be written to the
memory space has been completed or immediately if no
GC safepoint of said one or more GC safepoint is in
progress, initiating copying of the kernel buffer data
directly from the kernel buffer to the memory space
using a non-blocking asynchronous I/O call of the first
thread, and after completion of copying the kernel buffer
data, changing the thread state associated with said first
thread to a second thread state which permits said first
thread to enter any GC safepoint of said one or more GC
safepoint;

10

15

20

25

30

35

12

invoking, in a second thread of said plurality of threads, a

poll function to determine if there is memory space data
in the memory space ready to be written to the kernel
buffer, and when such memory space data exists, chang-
ing the thread state associated with said second thread to
the first thread state which prohibits said second thread
from entering a GC safepoint of said one or more GC
safepoint;

blocking said second thread ifa GC safepoint of said one or

more GC safepoint is in progress when invoking a poll
function to determine if there is memory space data in
the memory space ready to be written to the kernel buffer
until said GC safepoint which is in progress when invok-
ing a poll function to determine if there is memory space
data in the memory space ready to be written to the
kernel buffer has been completed, and

after said GC safepoint which is in progress when invoking

a poll function to determine if there is memory space
data in the memory space ready to be written to the
kernel buffer has been completed or immediately if no
GC safepoint of said one or more GC safepoint is in
progress, initiating copying of the memory space data
directly from the memory space to the kernel buffer
using a non-blocking asynchronous I/O call of the first
thread, and after completion of copying the memory
space data, changing the thread state associated with
said second thread to the second thread state which
permits said second thread to enter any GC safepoint of
said one or more GC safepoint.

12. The non-transitory computer readable storage medium
of claim 11, including further instructions stored thereon,
which when read and executed by a computer, cause the
computer to perform further steps comprising:

determining when all of said plurality of threads have

blocked at any GC safepoint of said one or more GC
safepoint and enabling said garbage collector to perform
the garbage collection process on said program objects
and said data objects in the memory space.

#* #* #* #* #*

